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Continuous time random walks on moving fluids
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The scheme of the continuous time random W@ RW) is generalized to include the possibility of a
moving background. It is shown that this generalization reproduces in the macroscopic limit the usual
diffusion-advection equation and the properties of standard diffusion in a shear flow. The new formalism is
then used to derive the corresponding macroscopic equation for CTRW'’s with infinite mean squared step
length and with infinite mean waiting time in a moving fluid. For these two CTRW'’s we finally include an
analysis of the dispersion in three different two-dimensional linear shear i@4663-651X97)15506-4

PACS numbsgs): 05.40:+j, 05.60+w, 02.50—r, 47.15-x

I. INTRODUCTION ment in three kinds of shear flows are coincident with those
of standard diffusion theory. Section Ill contains the appli-
Diffusion in a velocity field is an important issue of dif- cation of this method to Ly flights of infinite mean waiting
fusion theory that is relevant in many industriatixing of  time and infinite mean square step length respectively. For
fluids, chemical reactions, elc.technological (electronic  this last point the theory of ordered spdas] must be used
transport, electrophoresis, §tand environmentasedimen-  in order to get conclusions on the rate of diffusion. Most
tation, spreading of pollutants, etaituations besides many results of this section for moving fluids are original and dif-
basic topics(Taylor diffusion, Rayleigh-Beard, etc.. This ficult to obtain by other methods. Finally the conclusions are
subject has been profusely studied from a variety of points ogXposed in Sec. IV.
view: diffusion-advection equatioft,2], Langevin equation
[1], path integralg3], and numerical simulationgl] and Il. BROWNIAN DIFFUSION
here we shall develop a new stochastic method to analyze it,

which can also be applied when the governing statistics is A. Diffusion-advection equation

not Gaussian but stabl&eévy statisticg. This method origi- In the continuous time random walk schere-7] the
nates as a generalization of the continuous time random waliuantity which defines the motion is the probability distribu-
schemdg4-7]. tion (r,7) of the random walker performing a jump of

Continuous time random walk&CTRW's) have proved length r after waiting a timer at its starting point. Its
the natural way to incorporate stable distributions owyLe Fourier-Laplace transform is related to the integral transform
distributions and anomalous scaling into the realm of randonof the probability density(x,t) of the walker being at time
walks as Ley flights. These Ley flights have been applied t at pointx through the well-known relatiof4,7]
with very good agreement to many physical experiments:
diffusion of carriers in an amorphous photocondudi8, K _1 1-¢(u)
anomalous diffusion in rotating fluid®], turbulent diffusion plku)= ul—y(k,u)’

[10], transport in turbulent plasmgLl], vortex dynamics

[12], and otherg13,14. In all of these cited examples dif- where ¢(7)=Jdr ¢(r,7) is the waiting time distribution

fusion is usually associated with a drift in the underlying function and by explicitly displaying the dependence lon

medium, be it a fluid or an electric field. This fact indicatesandu we indicate thajp(k,u) is the Fourier-Laplace trans-

the importance of a study of the coupling ofweflights  form of p(x,t). The relation(1), upon inversion, solves the

with a velocity field. Some few work§15—-17 have ap- problem of the CTRW governed by the probability distribu-

proached this question through heuristic generalizations dfon (r, 7). This same quantity also provides the form of the

the diffusion-advection equation but up to now it has not yetgeneralized diffusion equation of the motion[d$

been justified that these generalizations correspond Wy Le sp0x)

flights evolving in nonhomogeneous flows. This is the ques- pxt) , , ,

tion which we shall address in this paper, not through the at _f dx f d7 Kx=x"t=np(X,7)  (2)

diffusion-advection equation as [15-17 but following a

stochastic approach. To this aim we will need to generalizevith

the scheme of CTRW by allowing the step length distribu-

tion function to depend on the starting point of the jump. In U= (k,u)—(u)

Sec. Il we develop this generalization and test it with Brown- K(k,u)=u 1—@(u)

ian diffusion, we prove that the results concerning the

diffusion-advection equation and the mean square displacéFhe relation between CTRW's and fractional derivatives
[19] has been proved both froifl) [20,21 and from (3)
[22]. In the next section we will make use of this relation to

*Electronic address: albert@telemaco.uab.es write down diffusion-advection equations for eflights.
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In this article our interest will be focused on random If we wish to retain just the essential properties of the
walkers in moving fluids, that is to say, on biased CTRW's.motion which manifest macroscopically, independent of the
It has already been observiZB] that for some random walk particular stochastic model chosen, we need to take the limits
models with bias, the structure functiarfk) = fd7 #(k, ) 7—0, 7,—0 ando— 0 keepingD = 0®/ 7 andA= 7,/ con-
has an imaginary linear dependencekain the shortk limit, stants. After taking these limits, we have
which does not appear in symmetric walks. We shall argue . )
now why this should be general and this will give us the clue K(k,u)=—iAk-v—Dk

for our further developments. : . . e
We start with the standard diffusion-advection equationand inserting this into E¢2) we get the standard diffusion-

for diffusion in a fluid moving along thex direction with advection _eq_uation, proviqled we ha{xe:l (this assumption
constant velocity: does not limit the generality at all sinée being nondimen-

sional, can be absorbed into a rescaling ahdD):

ap(x,t) . ap(x,t)

o ~ =DV?p(x,t). (4) ap(x,t)

ot

+V-Vp(x,t)=DV?p(x,t). (8)

In Fourier space this equation turns into
B. CTRW scheme for inhomogeneous flows

dp(k.t) = —(ikw +DKk?)p(k,t), We shall now allow for a nonhomogeneous velocity field
at v(x). This implies that the standard scheme of CTRW must
be revised to account for this inhomogeneity since now the
probability ¢ of a length of steg with waiting time 7 will
crucially depend on the velocity of the fluid at the starting

A(K)=1—i7rvk,— 7Dk?, (5) point of the jumpx:

where we assume, as in Brownian diffusion, that $= (1,7 1X) = o(r = 7aV(X), 7). ©)
¢(u)=1—ru for u—0 [4]. The term —irvk, obviously The CTRW scheme has to be now reformulated: if
comes from the advection term in @) and therefore con-  p(y 1) is the probability density of arriving at pointat time

tains the essential information for advection at Io'ng' dis- and p(x,t) is the probability density of being at poitat
tances, where one assumes E).to be generally valid ir- et we have[7]

respective of the precise form for thir,t) which defines

the diffusive motion. Now we argue that this term might be t

understood in the frame of CTRW as a displacement in the P(th):f dx’ fodt, d(x=x",t=t";x") P(X',t")
original (in a resting fluid step length distributiony(r,t):

in a fluid moving with constant velocity + 8(x) (1), (10

¢(rat):¢0(r_VTa:t): (6)

wherer, stands for an advection time scale which in Brown-
ian diffusion coincides with the mean waiting time at a site
7 but for some Ley flights, as we will see, it needs be
different to provide a well defined macroscopic limit. Indeed,
this interpretation is consistent with our previous resajt
since a Fourier transformation yields

which in the light of Eqs(2) and(3) corresponds to a step
length probability distribution

p(X,t)=f0th P(x,t—7n)W¥(7), (11

where we have introduced if11) the probability¥W () of
remaining at least a time on the spot before proceeding
with another jump( ¥ (7)=[7¢(7)d7 ) and we have incor-
porated the initial conditions for a pulse initially concen-
trated at the origin in the form of the delta functions(ir®).
Pk, t)=e "7k Vyo(k,t) (7)  We now combine Eqg10) and(11) to get

and in the shork Iim_it (long dista.m.ce)sthe term—ir,r_,k-v. p(x,t)= Jth \I’(T)J dXIJHdt/ S(x—x" t—7—1";x")
appears. We see this more explicitly now by considering a 0 0

particular CTRW which leads to Brownian diffusion. We
make the choicesy(r,t)=Ce !7e""4"* heingC a normal-
ization constant. In the Fourier-Laplace space and u§ihg Performing now the variable change=t"— 7 and inverting
we get the order of the time integrals we arrive, in the Fourier-
Laplace domain, to

XP(X',t')+ S(X)W(t).

(p(k'u):e—irak-vﬁe—(rzkz
T p(k,u)=J dk’ é(k,u;k—Kk") p(k",u)+W¥(u). (12

so that, following(3), the kernel of the associated general-

ized diffusion equation is Equation(12) will be the starting point for the remainder
of the article and is a generalization of equation Eg.for

the case of CTRW’s in nonresting backgrounds, where one

k= Ly
, . ' has, according t@9),
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p(Ky,ky ,u)=p(ky ,ky+ N0k, ,u)
N—1
X TT wolky ky+n7aok,u) + ¥ (u)
n=0

¢(k,u;k')=¢o(k,u)fdX’e_”"'x/e“Tak"’(x/). (13

C. Linear shear flows

N—-2 n
We shall now consider some particular instances of flows
where this scheme can easily bpe applied. They will all be x 2o nl_,[ Yolk, Kyt mrawky,u) +¥ ().
linear shear flows, i.e., flows defined by a velocity field of
the formv(x) =Q-x, with £ a constant square matrix with (17)
inverse time dimensions. By usin@2) and(13) we get the | the Jimit N—o we have in the first summand ¢17) a
equation bounded functionp multiplied by an infinite product of

terms smaller than one; this term obviously vanishes in the

Pk, =dho(k,u) plk+Vic,u) + () (14) limit that we are considering, so that we may write
with V= 7,Q7-k. In the macroscopic limit£,—0) we ob- S
serve thatV,—0, so that we approximatél4) for V,=0. p(kx,ky,U):‘I’(U)nZO ngo oKy, ky+mrawky,u)
This yields
+W¥(u), (18
[1—do(k,u)] p(K,u)=tho(K,u) Vi Vi p(Kk,u)+¥(u) which now solves the problem for any possible CTRW in a

(15) simple shear flow. A first conclusion to be drawn is that in

the y direction diffusion proceeds unaffected by the shear
and now the corresponding macroscopic diffusion-advectioflow as becomes clear settikg=0 (average over direction
equation can be derived for any kind of CTRW by inverting x) in (18) and performing the product and the sum indicated
the Fourier-Laplace transform and performing the conveio get
nient macroscopic limit. To compare with the standard re-

sults we try 71now Bzro;/vnian diffusion, where p(0K ,u):E 1-¢(u) ,
Yo(k,u)=(1+u7) “exp (-~ o°k?) and obtain Y u 1—o(0ky,u)
which turns out to be identical to the solution of a CTRW in
a—p-‘rV'(Vp)ZDVZp. a res_ting fluid(1). We therefore only expect no_veltie_s in
diffusion along thex axis. For Brownian diffusion with
llfo(kx,ky.U) o(u) exp (— o’k — o %k}), e(u)=

This scheme, though, does not only show the form of thd1+ur) " and averaging over thg direction ky=0), we

advection-diffusion equation for CTRW's but can also yield 9€

results concerning the properties of such a diffusive motion. o
. . . . . 2

Ir_1 pertlcular, an important quantity that charac_terlzes Q|ﬁu— p(kx,O,U)=‘I’(U)2 (¢(u)e—02kx)n+1

sion is the mean square displacement, which gives an idea of n=0

the rate of diffusion of the walker. We now apply our gen-

eralized CTRW formalism to obtain this quantity for Brown- X exp UzTZwZKZW
ian diffusion in three important two-dimensional cases: 6
simple shear, pure rotation, and pure shear. We will thus W (u)
check the validity of the model since all these properties are '
well known for Brownian diffusior{1]. We are now interested in the moments of this distribution; it
is easy to see thaix)=0 so the dispersiokiox?) will di-
1. Simple shear rectly be given by(x?) and is easily computed from the
In this case we have(x)=(wy,0), or equivalently Fourier transform op as
2
0 o (x 2>__¢9p(kx,0u)
Q:(o o)' M ieo

We therefore have
from whereV, = (0,7,0wk,) so that Eq.(14) turns into

©

<5x2>:2\1f(u)02n§0 (W™ N+ 1+ r30?

p(Ky Ky ,U) = oKy Ky o U) pKy Ky + Tk, U) + W (U).

(16) nn+1)@n+1)

5 +W(u). (19)

We now repeatedly iterate relatigd6) to obtain afterN
iterations The sums in(19) can be performed explicitly and we obtain
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(6x?y=20"?

z a — 212 212 ;
Ul-o(u) U\ T-e(u) z/xo(kxéky,g)_— cp(u)2e>2<pn(. o ks o ki) and, obse.rvmg
thata,+b;=(1+w°7y)", it is straightforward to obtain

1 o(u) TZwZ/ o(u) )2 We now try with the Gaussian diffusion

27202 u 3] 1—¢(u
I S w
¢ P(kOU)=W(W)| 1+ 3 ¢(u)"
and introducinge(u)= (1+u7) ! the dispersion turns out )
to be, after inverting the Laplace transform, 5 o (1F w?r)"-1
xXexp — o’k ————>——
2 2.2 2.2 W Ty
(o)y=27 t+ 21221 2 23| gvr
T 27 37° ' The first momentx) vanishes and the dispersigax?) is

again determined byx?) which is easily computed and
We now take the limit—0, 7,—0, 0—0 keeping gives
D=o¢?/7 and A=7,/7=1 constants, which we henceforth

call the macroscopic limit, to get ) ,1 e(u)
OX)=20— . 24
. () =20 I D e(w) @9
N i 2 _ =23
(AxH= lim {ox")=2D t+3wt ) @D We can now substitute the waiting time distribution

7,7Tq,0—0

o(u)= (1+u7) ! to obtain the mean square displacement
which is precisely the result obtained by solving thefor Brownian diffusion in a circular flowwe useD=o?/7

diffusion-advection equatioft]. andA=1,/1)
2. Pure rotation 2 Aw?rt
OXy= et Tat—1).
For this flow we have (6% szTa( )
0 —w In the macroscopic limitr,—0 we finally obtain the stan-
Q0= ) dard resulf1]
o 0
(Ax?)=2Dt (25)

whence the equation for the random walker will(id) with
Vi=(—7awk, , 7a0ky). Again we iterate this equatioil

. so that diffusion remains unaffected by the rotation of the
times and get

fluid.
p(ky Ky ,u) = p(anky—byky ,anky+byky ,u) 3. Pure shear
N-1 In this kind of flow the fluid approaches the origin along
X H do(@anky—bpky a5k, +bpky ,u) one direction and separates along the perpendicular direc-
n=0 tion, if we take these two directions to be=y and
N-2 n x=—Y, the flow corresponds to
+\P(u)2 H ‘//O(amkx_bmkyaamky
=0 m=0 0 w
o[, ol
+ bk, U) +V(u), (22) w 0
where we have defined the following real coefficients: and we will have to work with Eg.(14) with

V= (710K, 7,0k,). We proceed as before iterating this
1 equationN times and get
an=§[(l+ina)n+(1—ina)”],
p(Ky Ky ,u) = p(CcnKy+dyKy ,Cnky +dyky ,u)

1 ] ) N—-1
bn=z[(1+ | wTa)”—(l—IwTa)”]. % nl:[O l//O(anx+ dnkyacnky+ dnkx,U)
Again when we repeat the iteration indefinitely the first sum- N-2 n
mand in (22) vanishes since is a bounded function and +W(u) 2 H Po(Cmky+dmky ,CrKy
g is everywhere smaller than 1. Now we only focus on the =0 m=0
x direction since the problem is isotropic. We therefore av- +dk,,u) +P(u), (26)

erage along thg direction by setting, =0
where now the coefficients are defined as follows:

© n

p(kO,W) =T (u) > 1 wolanky,bmky,u) +¥(u).

n=0 m=0 1 1+ n+(1- n
(23 Cn_z[( 0Ty)"+( 0Ty)"],
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1 waiting times and we need neither the diffusion-advection
dp=5[(1+ wT) "= (1-w7y"]. equation nor the Langevin equation. This fact enables us
now to attack the problem of vy flights of two different

We just consider the direction since the symmetry assures kinds (infinite mean square step length and infinite mean
that the behavior along is exactly the same, so we average Waiting timg) in a sheared medium. This problem had al-
along they direction by settingc,=0. When we repeat the ready been addressed by starting from a postulated general-

the same reason as in the two previous cases to yield mean square step length, but the other case remained obscure

because too many problems arose from the analytic manipu-
*» N lation of a similarad hocgeneralization of the macroscopic
p(kX,O,u)=‘P(u)E H Po(CmKy ,dmKy ,u) + T (U). equation for that case. In contrast, the derivation along the
=0 m=0 method that we propose here is elegant and easy and even
27) substantiates the macroscopic diffusion-advection equation

We now introduce our particular model distribution Which is to be applied to each case.
Yo(k,u)=@(u) exp (— o?k?) and usec’+d2=c,, to write

it as lll. LE VY FLIGHTS IN SHEARED MEDIUMS
w We will here apply the scheme presented in the previous
p(k,0u) =T (u)] 1+ > o(u)" section to two CTRW models which in resting fluids lead to
n=1 anomalous diffusion: we first present the results for the

CTRW with infinite mean waiting time and we then turn to

2,2 2
7 kx/ 1-(1+ 07)™ the CTRW with infinite mean square step length.

2 |\ 1-(1+w7,)?
)” A. Infinite mean waiting time

X exp

1-(1-w7r,)?" .
+ 1-(1—wr)? To produce a CTRW which corresponds to avydlight
a with an infinite mean waiting time we might choose, for

The first momentx) vanishes and the dispersigax?) is  nstance, a probability distribution such @]

again determined byx?) which is easily computed and 1
i — _ 21,2 i
gives Yo(k,u)= 1+(W)yexp( o°k?)  with 0<y<l1.

1-(1+ wr,)?" (30

1-(1to1)? We will first try to see what the convenient generalization of
the diffusion-advection equation is. To do this we recall the

<f>‘x2>=o2\v(u>n§1 e(u)"

2
N 1-(1-w7y)™" (26)  esult(15) with V= Q7 k , we introduce the distribution
1-(1-wty) that we now propose, we invert the Fourier-Laplace trans-

) . form and we take the macroscopic limit, now keeping
The summations are not difficult to carry out; we then sub-p — r./7" and D=¢?% 7" constants asr—0, r,—0 and
stitute the waiting time distributiop(u)= (1+u7)"* and ;0. This leads to the following diffusion-advection equa-
with onl)_/ some easy but t_edlous algepra we get a reas.onab{%n (we now have amA with dimensions of time to the
expression and perform its Laplace inversion to obtain thg,ower 1—y and, therefore, it cannot be given the value 1
mean square displacement for Brownian diffusion in a purely, o, he apsorbed within a redefinition Bf andt, it must be

sheared flow handled as a macroscopic parameter on an equal footing with
) 0.2 27 TZe(—2w7a+ wz’rg)t/T D)
(x5 ()= — 22 22 J7p(x,t
Tl4T e 207aTm @ TeT —f;(ty' )+AV-[V(X) p(x,1)]
TZe(ZwTa+ szg)t/'r
27,7+ 02757 | —v2 t7
DV<p(x,t)+ —F(l— ) 8(X), (31

We now take the macroscopic limit with=¢?/7 and
A=7,/7 constants and,—0 and setA=1 so that we fi- Wwhere we have made use of the Riemann-Liouville fractional
nally obtain the standard resuilt] derivative[19] much in the same spirit as [22]. The source
term appearing in Eq31) stems from the Laplace transform
of the Riemann-Liouville derivative and incorporates the ini-
tial conditions.
Equation(31) proposes an answer to the questions arisen
We have therefore seen that the scheme is absolutely coir some workg15,17] as to what should be the convenient
sistent with the standard results of diffusion theory. The nov-generalization of the diffusion-advection equation for this
elty here is that we obtain the macroscopic mean square digype of Levy flights. In this scheme this question is answered
placement directly from the distribution of step lengths andquite naturally and demands of the introduction of a new

(Ax?)= %sinh (2wt). (29
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macroscopic parametér which sets the right dimensions in urt

the advection term. The nature and interpretation of this new (Ax?)=2D T aAAZ2

parameter is still unclear and demands of some further inves-

tigations. which cannot be analytically inverted but admits an

We now turn to the three types of linear shear flows, anchsymptotic development for long timdas u2— (2Aw)?”
try to see what the mean square displacement of the CTRWom the righ as

with long-tailed waiting time distribution is when the CTRW

evolves over a linearly sheared medium. urt (2Aw)Y7~ il 24
2Y_AN2,,2 2_ 2Ty
1. Simple shear u Ao 24y [u (2Aw)
We must use the distributiof80) in the Eg.(18) and 2=
i — ———= (U= (2A0) )+ - --
proceed along steps analogous to the ones for Brownian (2Aw)*Y :

diffusion. Nevertheless, we observe that the spatial part

in (30) is the same as in Brownian diffusion and we canThe Laplace inversion of the leading term in this expansion

therefore borrow Eq.(20) and directly substitute our is now easily performed to obtain the asymptotic behavior of

e(W)=[1+(u7n)] a Levy flight with infinite mean waiting time in a purely
sheared medium

2 a)27'2 w27_2
<6x2)=20—y(u17+ —uTi 2 2y D
T T T (Ax?y=——sinH (2Aw)]. (32
vAw
uT Y
+ 1+(ur)?" Comparing(32) with the mean square displacement for a

Brownian walker in a purely sheared mediy2g), we see
Upon Laplace inversion and after the macroscopic limit withthat for y— 1 both expressions coincide and fox@<1 the
D=o?/7" andA= 7,/ 7" constants, we end up with long-time dispersion of the vy flight grows significantly
faster for slightly sheared medjg2w)?~1<A]. For a more
intense pure she@it2w)”~ 1> A], though, it is the Brownian
random walker which advances more rapidly.

(Ax2>=2D[ w?A%37 |,

Y+
T(1+y) " T T(1+3y)
which coincides with(21) when y=1. This is therefore the B. Infinite mean square step length

mean square displacement for this kind ofvizeflight in a e
simply sheared medium. This result is not easy to obtain W€ now want to study CTRW's with infinite mean square

from its associated diffusion-advection equati@i), only step length, that is, lwy flights of a different kind of the one

through this generalized CTRW scheme becomes the derivgonsidered before where we take as a step length and waiting
tion natural. times distribution the following:

2. Pure rotation Po(k,u)= 1_'_m_exp[—a-zﬁ(ki—k kf,)/g] with 0<pB<1.

Again we exploit the fact that the spatial term @0) is (33

the same as in Brownian diffusion and just introduce

o(u)= [1+(u7)?] ! in Eq. (24) obtaining (remembering As before we first look for the convenient generalization of

that for this cas® = o?/7¥ andA=1,/77) the diffusion-advection equation by taking the form(l#%)
with V,=7,Q7-k and introducing ourgy(k,u). We then
invert the Fourier-Laplace transform and we take the macro-

u(u”—Aw?r,) " scopic limit, now keeping\= 7,/ andD = o®#/ r constants
as —0, 7,—0, and 0—0. This leads to the following

We take the limitr,— 0 and we invert the Laplace transform diffusion-advection equatio@sA now has no dimensions it

to obtain the result can be absorbed within a redefinition Bf andt or be set

equal to unity:

(6x%y=2D

M=ot Ip(x,t)

at

+V-[V(X) p(x,1)]=DV2p(x,t). (34

which is the standard diffusion regime in a resting medium,
so that for these lyg flights, as for Brownian diffusion, the This is the diffusion-advection equation for\yeflights with
dispersion( x?) remains unaffected by the rotating fluid.  an infinite mean square step length. It had previously been
conjectured 15,17 but this is its first analytic derivation.
3. Pure shear We now study the typical displacement of the CTRW
As in the previous cases we take advantage of the calcwith long-tailed step length distribution in linearly sheared
lations for Brownian diffusion in a pure shear and introducemedia. We consider the same three linear flows as before but
our distribution ¢(u)= [1+(u7)?]"! into Eq. (28). We  we encounter now a new difficulty: the quantity that charac-
carry out the summations and we take the limit convenientljterizes the relative diffusion of the trajectory cloud, tradition-
to obtain ally the mean square displaceméidix?), is now not well
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defined since the second moment of the density of particles CM,B=16B(1—,u)(27r)“‘2
diverges. This fact has led some researchers to discard these
Lévy flights and to introduce instead thé \yewalks, where

a coupling between waiting times and step lengths of the X;O
walker solves the problersee[24] and references thergin

We shall not follow this approach here. Instead, we resort tg
a theoretical frame which can provide us with a finite defi-
nition of the dispersion: the theory of ordered spab8§].
Following this theory, if we have a symmetric step length 28—
distribution in one dimension, the probability of having the CM’B=8(1—M)(277)“2(22“—1)5(2—#)F< 5 )
walker within a centered interval of length at timet, for B

]

1\#72 o
'+E) f g8 le g,
0

.p 18 finite as long aw <28 andu<1 and is expressible
in terms of the zeta numbef$v) and the gamma function as

sufficiently highm andt, is (37
8 T These constants ape dependent so we will suppress them
p(m,t)= ﬁg Wp(k,t) } from our definition ofAx? since we are looking for a quan-
(Mm+1)*=o k=2m(1+1/2)/(m+1) tity which retains the main features common to (aii*)/»
but is independent ofc. We make the following definition:

Furthermore, this theory also assures that for symmetric

movements all moments @f(m,t) have the same statistical

properties, that is to say, alli*))Y* have the same tem- sz(t)52<
poral dependence irrespective of the valuguogven though
numerically they might be different. We will later exploit
this fact by choosing conveniently to simplify our calcu-
lations and by defining a dispersidm? independent of.

In the meantime we shall work with an arbitrauy

<M”><t))2’“,

38
., (38)

where(M*#) stands for the macroscopic limit ¢m*). We
will show in our examples that this definition proves to be
independent ofu and coherent with the mean square dis-
placement(Ax?) of Brownian diffusion as8— 1. Further-

% more, from(36) it seems that the divergences which appear
<m/‘>(t)=f m* p(m,t) dm=—8(1—u)(2m)*~? in C, 5 and in(m*) when x=2p cancel out in definition
0 (38) as we show in the next example, so thet 23 is as
o 1\ ~2 o dp(k,t) good as any other value in order to compite’.
X D (|+ 3 f k=~ K dk, (35 If the fluid is at restw=0, Eq.(36) simplifies to

=0 0
where in the last equa_llity we have approximat_ad 1=m, (M(U)=C,, zo* W(U)D o(u)nH2e, (39)
we have changed variables=2m(1 +1/2)/k as is custom- n=1

ary in the theory of ordered spafis8], and have integrated
once by parts supposingQu<1 to keep everything finite. Now, the choice foru which would simplify most this cal-
We will now apply this theory to each of the linear shearculation would beu=2g but this value forx would make

flows which we studied for the other cases. the constanC, ; (37) diverge and therefore it does not seem
_ to be appropriate in this casblevertheless, since what we
1. Simple shear really seek to compute idx?, if the divergences in(38)

We take from(18) our probability density(k,u) with the  cancel out foru=28 we conjecture that thAx? thus com-
choice for our particular CTRW33). This gives the prob- puted coincides with whateverx?> computed with any other
ability density averaged along thyedirection for this case . We corroborate this conjecture for this particular case
shear,w=0) and then we apply it in our further develop-
ments to simplify our calculations. We take an arbitrary
satisfyingu<2p and u<1 so thatC, ; is finite. We can
then write(39) as

o]

P(kx,O,U)=‘I’(U)[ 1+n§0 e(u)"

n
xex;{ —o?PK2P Y (1+ meZTg)BH "
m=0 el

25
and we introduce it in(35 to get, after taking the P
derivative ~and performing the variable changein terms of the special functio®(z,s,v) (for the definition
E=ok[=D_o(1+m2r2w?)P1Y2, and a list of properties see, for instanf2g]). In fact, we are
interested in the behavior ¢fm*) in the macroscopic limit,

_ - +1 when ¢(u)=(1+u7r) 1—1. We therefore make use of the
(m#)(u)=C, go* \If(u)z,o e(u)" following asymptotics ford:

(M) (u)=C,, go* ¥(u)e(u) q’(cp(u),— l) (40)

uizp I(1—v)

x| > (1+mir2wd)B| (36) d(X,v,5)= ——1= as x—1. (41)
Mm=0 a (1-x)

whereC,, ; contains all the constants So that(40) is approximated in the macroscopic limit by
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u It is now easy to see that setting=(1+ur) ! and taking
I e(u)
(M) (u)=C, go* T'| 1+ 258 U= o (u))"2E the macroscopic limif 7—0 with A=r7,/7 and D=0?#/r

constants and using the asymptoti{d4)] both sides of the
which upon substitution of the standard waiting time distri-inequality yield the same expression, so that we can con-
bution ¢(u)= (1+ur) 1=1—ur, application of the mac- clude

roscopic limit with D= ¢2#/7 constant and Laplace inver-
sion yields(M#)(t) and then substitution i638) gives the
usual scaling behavior for theséeflights in resting fluids
(note that it is independent qf)

(M2P)(u)=Cyp sDA?PW?PT (1+2B)u"2"2F

and we now perform its inverse Laplace transform to get
(M?2P)(t). The typical scaling behavior of a"izg flight de-
Ax2=2(Dt)Y-. (42) fined by a long-tailed step length distribution in a fluid sub-
ject to simple shear flow is then obtained by applying defi-
We now show thaj. =2 yields the same result in a much hition (38)
simpler way. Settingu=28 in (39 transforms the previ-

. R - : . 2
ously complicated power series in a geometrical series which Ax2= 2p B2+ 1B 44
is straightforwardly computed and yieldgormally, since (28+ e ’ 44

Cop.p is known to divergg ] )
which has exactly the same temporal dependence which was

28\ _ 28 e(u) found in [15] in a heuristic manner starting from the
(M) (U)=Cyp go q’(”)m- diffusion-advection equatiof84). The result(44) converges
exactly to the Brownian diffusion resu(®l) for p—1 at
Introducing nowe(u) = (14 u7) 1, taking the macroscopic sufficiently long times(when the formulas of the theory of
limit with D=02#/7 and inverting the Laplace transform ordered spans applylt is interesting to note fronf44) that
gives(M?#)(t) and substitution in our definition for the dis- Levy flights with infinite mean square step length enhance
persion Ax? cancels out the divergencies and leads us talso diffusion in a simply sheared flow with respect to the
exactly the same temporal dependence as we got for the caggual scaling for Brownian motionx*~t3 (21).

= B with finite constaniC , ; (42)
w=p P 2. Pure rotation

2_ 1/,
Ax*=2(Dy)*~. (43 For this other linear shear flow we proceed in a similar

manner by using23) in (35). Equation(23) yields, upon

The correspondence betwe@r?) and(43) supports our con- introduction of ourg, (33

jecture thatu=28 is as good as any other moment to
computeAx? and that definition(38) is independent ofx.

We now study a general simple shear flow wiik 0: we p(ky,0,u) =T (u)
setu=2p in (36) and invert the order of the summations to
get

©

1+n§l e(u)"

_ 2_2\nB
wext| —o2o2sl L@ T
X 1—(1+ w?r)?

e(u)
(m?B)(u)=Cyp go?# T3P w?P m
We derive it with respect t&, and introduce this result into

B formula (35). Changing variables convenientlgee the pre-
vious casgthe resulting equation turns into

- 1
X uym +m?
2, ez

ui2p

1-(1+ 0?2
1-(1+ szg)B

We will see now that, in the macroscopic limit, this summa-

— n
tion can be calculated. First we note that the following in- (M) (U)=C,, go* \P(u)z’l e(u)

equalities are true: (45)
EZ 25 m<22 1 o whereC,, 5 contains all the constants again and reads as in
U, m=e U=, Y\ 22 m (37). We now chooseu=28 for the computation 0f45)
a since we know that the divergences cancel out when we use
¢ < 1 2B definition (38) for Ax2. With this choice, Eq(45) simplifies
<—E @m( + m) enough in order to carry out the summation explicitly so that
Um=0 TaW
we get
From where, using the definition fdr(z,s,v) [25] , we can (mzﬁ)(u)zczﬁyﬁazﬁ‘lf(u)
write
o(e,-280<ES so’“(%mz (1= e(W— () (i+ D) T
u Um=0 Ta(l)
We now introduce the waiting time distributiop(u)=
¢ _ 1 (1+u7) ! and take its inverse Laplace transform. We ob-
<—®| ¢,—2p, . .
u TaW tain, formally,
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2p €X

o with respect to the characteristic behavior in a fluid at rest
<m2'8>(t):C23,ﬁT

;2 3 (43). Again for this case our definition for the dispersion
(1+e')" -1 Ax? converges exactly to the mean square displacement of
T Brownian diffusion{Ax?) in a rotating flow(25) asg—1.

r{(lerzTg)ﬁ_ 1 } . which, for this CTRW as for Brownian diffusion, is invariant
—t —

We now setD =o?#/7 and A= 7,/7 constants and take the

macroscopic limit in order to obtain the macroscopic 3. Pure shear

(M?P)(t). Subsequent substitution in definitiof88) for We follow analogous steps as in the previous two cases
Ax? then vyields the macroscopic typical scaling of such aand introduce our distributiof83) into the formula for the
diffusive motion in a purely rotational flow probability densityp in this kind of flow (27) to get

Ax?=2(Dt)"%,

n

p(ky,0,u) =\If(u){ 1+ ZO (,o(u)”“exp{ o E_O

(1+ wTa)Zm-l-(l—a)Ta)zm) '8“
5 )

Putting it into Eq.(35) and performing the variable change much in the same spirit a8&mve end up with

©

(M) (u)=C, go* qf(u)ngo @(u)"+l

wui2p

(1+ wry) M+ (1— wTa)zm)B

mEiO( 2

Again we useu=28 in (46) to simplify the summations. We can then invert the order of the summations, carry out the
innermost one and get

(46)

oo

YW S
e

(1+ wTa)Zm-f-(l—wTa)zm)ﬁ

(m?Py(u)=Cyp go?P >

(47)

To compute the last summation we will perform some alge- 5 t
braic manipulations: we first take the summand (M2P)(t)=Cyp 4D fodTCOSW(ZwT)-
(1+ w7,)?M out of the parentheses and then we express the

r_esulting pa_rentheses to_ the pqu‘bas a series; the SUMmMa- hjg integral can be approximated since B8<1, for large
tion overm is then readily carried out and we obtain

enought, as
14 (B D
(M?P)(u)=Cyp gor?P Fz’o o (M23)(t)=CZB’BZI‘TwcoshF’l(Zwt)sinf’(Zwt)
W(u) 1 and the dispersion is, therefore, according to definit@s)
1-¢ 1—wr, |\ 2"
1—o(1+wry)?? 1 D s
@WTa AX?=2 zﬂ—wcoshf‘*l(Zwt)sink(Zwt) ,

We now introducep(u)=(1+u7) ! and apply the macro-
scopic limit term by term keepingD=0?#/7 and Which coincides setting=1 with the mean square displace-
A= 7,/7=1 constants in our infinite sum. We invert now the ment of Brownian diffusion in a pure shear floi&9). As-

Laplace transform on the resulting series to get ymptotically fort— o we then have
o g
D B\ 1— ee(s=2nt 2~( D ) o
2B\ (1) — —_ Axe=|——| e,

which are the same asymptotics(@9) from where we con-
clude that, for sufficiently long times a"izg flight with in-
finite mean square step lengtiwhich traditionally leads to
ex20(8—2n)7] enhanced diffusiondoes not enhance ilj a purgly sheared
flow the performance of Brownian motion. This contrasts
with the previous result for lwey flights with infinite mean
or, performing the summation explicitly, waiting time which in resting fluids lead to subdiffusion but

which is easily seen to correspond to

B
n

C t <
(M28)(t)= —Z%BDI dr>,
2 0 n=0
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TABLE I. Summary of the macroscopic dispersions obtained for the three kinds of flows staifgzle
shear, pure rotation, and pure shearthe three cases considered: Brownian-like diffusionyllights with
infinite mean waiting time, and vy flights with infinite mean square step length. The symboindicates
that the result shown is a long time behavior.

(Ax?) Brownian Lavy, (r)=00 Lévy, (12)=c
Simple shear D(t+ 3w’d) 1 202A2 2 a1l
Y 3y ~ w?DVBt2 1B
Draiyt Ty } 2B+1)™P
Pure rotation Dt 2D o ~2(Dt)Y8
I'(l1+vy)

Pure shear D . D . D up

—sinh (20t) ~m5|nﬂ(%w)1’7t] ~2[%cosﬁ31(2wt)sinr(2wt)

in purely sheared flows, if (@)” <A, enhance the super- able that in the pure rotation case the three cases coincide
diffusion of standard diffusive movement32). with the corresponding results for a resting fluid: Brownian
diffusion, subdiffusion, and superdiffusion, respectively. In
the simple shear case we also see that the dispersion for
Brownian diffusion{Ax?)~t3 expands faster than that for
The main contribution of this paper is the formulation of a Lévy flights with infinite(7) and slower than the correspond-
generalization of CTRW's to account for diffusion in mov- ing Ax* for Lévy flights with infinite (1?). The astonishing
ing fluids. This formulation permits to study the behavior of result s that this trend is no longer followed in the pure shear
Lévy flights in these media in a much more rigorous waycase, where Ly flights with infinite mean waiting time
than through anad hoc generalization of the diffusion- Might even lead to the enhancement of the Brownian super-
advection equation as was up to now customary. From théiffusion for sufficiently weak sheare\>(2w)”"". For
scheme which we put forward here the existence of a newtrong enough shears, though, diffusion is again slower than

macroscopic parametex associated to the onset of advec- N the Brownian case whereaswgeflights with infinite mean
tion appears as necessary fovkdlights with infinite mean Square step Iength aIway; Sh,OW the same asymptotic super-
waiting time in order to have a well defined macroscopicd'ffus'on as Brownian motion irrespective of the value which

limit. The nature of this parameter remains obscure but it§ak&/8 or .
necessity for the coherence of the scheme is strong enough to
admit it before further investigations are carried out.

We have here applied this scheme to three types of two- Professor David Jou and Professor J@&&sas-Vaquez
dimensional shear flows and we have got the asymptotics faire gratefully acknowledged for useful discussions and for
the typical rate of diffusion for Brownian walks, iz flights  their interest in this work. We also express our appreciation
with infinite mean waiting time and vy flight with infinite  to Professor Y. Katayama, from College of Engineering, Ni-
mean square step length, respectively, which we show ihon University, Koriyama, for drawing our attention to this
Table | where with~ we indicate that the result is only field of research. The author also wishes to express his grati-
asymptotically valid for large values dfand (Ax?) means tude to the Department of Mathematical Physics of the Uni-
that in the first two columns the mean square displacementersity of Ulm for their hospitality and for some interesting
(Ax?) is presented and in the last column the expressiondiscussions with Professor T. F. Nonnenmacher and Dr. R.
correspond to our definition of the dispersiax? for Lévy Metzler, which somehow have their continuity in this work.
flights with infinite mean square step lengths. We are thereThe author is supported by the Programa de Formacio
fore comparing different quantities but we claim that theyd’Investigadors of the DirecciGeneral de Recerca of the
approximately describe the same property for each diffusioiGeneralitat de Catalunya. Financial support from the Direc-
mechanism. This is supported by the correspondence beion General de InvestigagioCientfica y Tecnica of the
tween the results in each row, which is satisfied at least asSpanish Ministry of Education under Grant No. PB94-0718
ymptotically both fory—1 and for@—1. It is also remark- is acknowledged as well.

IV. CONCLUSIONS
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