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Continuous time random walks on moving fluids

Albert Compte*
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~Received 12 February 1997!

The scheme of the continuous time random walk~CTRW! is generalized to include the possibility of a
moving background. It is shown that this generalization reproduces in the macroscopic limit the usual
diffusion-advection equation and the properties of standard diffusion in a shear flow. The new formalism is
then used to derive the corresponding macroscopic equation for CTRW’s with infinite mean squared step
length and with infinite mean waiting time in a moving fluid. For these two CTRW’s we finally include an
analysis of the dispersion in three different two-dimensional linear shear flows.@S1063-651X~97!15506-4#

PACS number~s!: 05.40.1j, 05.60.1w, 02.50.2r, 47.15.2x
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I. INTRODUCTION

Diffusion in a velocity field is an important issue of di
fusion theory that is relevant in many industrial~mixing of
fluids, chemical reactions, etc.!, technological ~electronic
transport, electrophoresis, etc.!, and environmental~sedimen-
tation, spreading of pollutants, etc.! situations besides man
basic topics~Taylor diffusion, Rayleigh-Be´nard, etc.!. This
subject has been profusely studied from a variety of point
view: diffusion-advection equation@1,2#, Langevin equation
@1#, path integrals@3#, and numerical simulations@1# and
here we shall develop a new stochastic method to analyz
which can also be applied when the governing statistic
not Gaussian but stable~Lévy statistics!. This method origi-
nates as a generalization of the continuous time random w
scheme@4–7#.

Continuous time random walks~CTRW’s! have proved
the natural way to incorporate stable distributions or Le´vy
distributions and anomalous scaling into the realm of rand
walks as Le´vy flights. These Le´vy flights have been applied
with very good agreement to many physical experimen
diffusion of carriers in an amorphous photoconductor@8#,
anomalous diffusion in rotating fluids@9#, turbulent diffusion
@10#, transport in turbulent plasma@11#, vortex dynamics
@12#, and others@13,14#. In all of these cited examples dif
fusion is usually associated with a drift in the underlyi
medium, be it a fluid or an electric field. This fact indicat
the importance of a study of the coupling of Le´vy flights
with a velocity field. Some few works@15–17# have ap-
proached this question through heuristic generalizations
the diffusion-advection equation but up to now it has not
been justified that these generalizations correspond to L´vy
flights evolving in nonhomogeneous flows. This is the qu
tion which we shall address in this paper, not through
diffusion-advection equation as in@15–17# but following a
stochastic approach. To this aim we will need to genera
the scheme of CTRW by allowing the step length distrib
tion function to depend on the starting point of the jump.
Sec. II we develop this generalization and test it with Brow
ian diffusion, we prove that the results concerning t
diffusion-advection equation and the mean square displ
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ment in three kinds of shear flows are coincident with tho
of standard diffusion theory. Section III contains the app
cation of this method to Le´vy flights of infinite mean waiting
time and infinite mean square step length respectively.
this last point the theory of ordered spans@18# must be used
in order to get conclusions on the rate of diffusion. Mo
results of this section for moving fluids are original and d
ficult to obtain by other methods. Finally the conclusions a
exposed in Sec. IV.

II. BROWNIAN DIFFUSION

A. Diffusion-advection equation

In the continuous time random walk scheme@4–7# the
quantity which defines the motion is the probability distrib
tion c(r ,t) of the random walker performing a jump o
length r after waiting a timet at its starting point. Its
Fourier-Laplace transform is related to the integral transfo
of the probability densityr(x,t) of the walker being at time
t at pointx through the well-known relation@4,7#

r~k,u!5
1

u

12w~u!

12c~k,u!
, ~1!

where w(t)5*dr c(r ,t) is the waiting time distribution
function and by explicitly displaying the dependence onk
andu we indicate thatr(k,u) is the Fourier-Laplace trans
form of r(x,t). The relation~1!, upon inversion, solves the
problem of the CTRW governed by the probability distrib
tion c(r ,t). This same quantity also provides the form of t
generalized diffusion equation of the motion as@7#

]r~x,t !

]t
5E dx8E dt K~x2x8,t2t!r~x8,t! ~2!

with

K~k,u!5u
c~k,u!2w~u!

12w~u!
. ~3!

The relation between CTRW’s and fractional derivativ
@19# has been proved both from~1! @20,21# and from ~3!
@22#. In the next section we will make use of this relation
write down diffusion-advection equations for Le´vy flights.
6821 © 1997 The American Physical Society
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6822 55ALBERT COMPTE
In this article our interest will be focused on rando
walkers in moving fluids, that is to say, on biased CTRW
It has already been observed@23# that for some random walk
models with bias, the structure functionl(k)5*dt c(k,t)
has an imaginary linear dependence onk in the shortk limit,
which does not appear in symmetric walks. We shall arg
now why this should be general and this will give us the c
for our further developments.

We start with the standard diffusion-advection equat
for diffusion in a fluid moving along thex direction with
constant velocityv:

]r~x,t !

]t
1v

]r~x,t !

]x
5D¹2r~x,t !. ~4!

In Fourier space this equation turns into

]r~k,t !

]t
52~ ikxv1Dk2!r~k,t !,

which in the light of Eqs.~2! and ~3! corresponds to a ste
length probability distribution

l~k!512 i tvkx2tDk2, ~5!

where we assume, as in Brownian diffusion, th
w(u).12tu for u→0 @4#. The term2 i tvkx obviously
comes from the advection term in Eq.~4! and therefore con-
tains the essential information for advection at long d
tances, where one assumes Eq.~4! to be generally valid ir-
respective of the precise form for thec(r ,t) which defines
the diffusive motion. Now we argue that this term might
understood in the frame of CTRW as a displacement in
original ~in a resting fluid! step length distributionc0(r ,t):
in a fluid moving with constant velocityv

c~r ,t !5c0~r2vta ,t !, ~6!

whereta stands for an advection time scale which in Brow
ian diffusion coincides with the mean waiting time at a s
t but for some Le´vy flights, as we will see, it needs b
different to provide a well defined macroscopic limit. Indee
this interpretation is consistent with our previous result~5!
since a Fourier transformation yields

c~k,t !5e2 i tak•vc0~k,t ! ~7!

and in the shortk limit ~long distances! the term2 i tak•v
appears. We see this more explicitly now by considerin
particular CTRW which leads to Brownian diffusion. W
make the choicec0(r ,t)5Ce2t/te2r2/4s2 beingC a normal-
ization constant. In the Fourier-Laplace space and using~7!
we get

c~k,u!5e2 i tak•v
1

11ut
e2s2k2

so that, following~3!, the kernel of the associated gener
ized diffusion equation is

K~k,u!5
1

t
~e2 i tak•v2s2k221!.
.

e
e

n

t

-

e

-

,

a

-

If we wish to retain just the essential properties of t
motion which manifest macroscopically, independent of
particular stochastic model chosen, we need to take the lim
t→0, ta→0 ands→0 keepingD5s2/t andA5ta /t con-
stants. After taking these limits, we have

K~k,u!52 iAk•v2Dk2

and inserting this into Eq.~2! we get the standard diffusion
advection equation, provided we haveA51 ~this assumption
does not limit the generality at all sinceA, being nondimen-
sional, can be absorbed into a rescaling oft andD):

]r~x,t !

]t
1v•¹r~x,t !5D¹2r~x,t !. ~8!

B. CTRW scheme for inhomogeneous flows

We shall now allow for a nonhomogeneous velocity fie
v(x). This implies that the standard scheme of CTRW m
be revised to account for this inhomogeneity since now
probabilityf of a length of stepr with waiting timet will
crucially depend on the velocity of the fluid at the starti
point of the jumpx:

f5f~r ,t ;x!5c0„r2tav~x!,t…. ~9!

The CTRW scheme has to be now reformulated:
P(x,t) is the probability density of arriving at pointx at time
t andr(x,t) is the probability density of being at pointx at
time t, we have@7#

P~x,t !5E dx8E
0

t

dt8 f~x2x8,t2t8;x8! P~x8,t8!

1d~x!d~ t !, ~10!

r~x,t !5E
0

t

dt P~x,t2t!C~t!, ~11!

where we have introduced in~11! the probabilityC(t) of
remaining at least a timet on the spot before proceedin
with another jump„ C(t)5*t

`w(t)dt … and we have incor-
porated the initial conditions for a pulse initially conce
trated at the origin in the form of the delta functions in~10!.
We now combine Eqs.~10! and ~11! to get

r~x,t !5E
0

t

dt C~t!E dx8E
0

t2t

dt8 f~x2x8,t2t2t8;x8!

3P~x8,t8!1d~x!C~ t !.

Performing now the variable changet85t92t and inverting
the order of the time integrals we arrive, in the Fourie
Laplace domain, to

r~k,u!5E dk8 f~k,u;k2k8! r~k8,u!1C~u!. ~12!

Equation~12! will be the starting point for the remainde
of the article and is a generalization of equation Eq.~1! for
the case of CTRW’s in nonresting backgrounds, where
has, according to~9!,
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55 6823CONTINUOUS TIME RANDOM WALKS ON MOVING FLUIDS
f~k,u;k8!5c0~k,u!E dx8e2 ik8•x8e2 i tak•v~x8!. ~13!

C. Linear shear flows

We shall now consider some particular instances of flo
where this scheme can easily be applied. They will all
linear shear flows, i.e., flows defined by a velocity field
the formv(x)5V•x, with V a constant square matrix wit
inverse time dimensions. By using~12! and ~13! we get the
equation

r~k,u!5c0~k,u! r~k1Vk ,u!1C~u! ~14!

with Vk5taV
T
•k. In the macroscopic limit (ta→0) we ob-

serve thatVk→0, so that we approximate~14! for Vk.0.
This yields

@12c0~k,u!# r~k,u!.c0~k,u! Vk•¹k r~k,u!1C~u!
~15!

and now the corresponding macroscopic diffusion-advec
equation can be derived for any kind of CTRW by inverti
the Fourier-Laplace transform and performing the con
nient macroscopic limit. To compare with the standard
sults we try now Brownian diffusion, wher
c0(k,u)5(11ut)21exp (2s2k2) and obtain

]r

]t
1¹•~vr!5D¹2r.

This scheme, though, does not only show the form of
advection-diffusion equation for CTRW’s but can also yie
results concerning the properties of such a diffusive moti
In particular, an important quantity that characterizes dif
sion is the mean square displacement, which gives an ide
the rate of diffusion of the walker. We now apply our ge
eralized CTRW formalism to obtain this quantity for Brow
ian diffusion in three important two-dimensional case
simple shear, pure rotation, and pure shear. We will t
check the validity of the model since all these properties
well known for Brownian diffusion@1#.

1. Simple shear
In this case we havev(x)5(vy,0), or equivalently

V5S 0 v

0 0D ,
from whereVk5(0,tavkx) so that Eq.~14! turns into

r~kx ,ky ,u!5c0~kx ,ky ,u! r~kx ,ky1tavkx ,u!1C~u!.
~16!

We now repeatedly iterate relation~16! to obtain afterN
iterations
s
e
f

n

-
-

e

.
-
of

:
s
re

r~kx ,ky ,u!5r~kx ,ky1Ntavkx ,u!

3 )
n50

N21

c0~kx ,ky1ntavkx ,u!1C~u!

3 (
n50

N22

)
m50

n

c0~kx ,ky1mtavkx ,u! 1C~u!.

~17!

In the limit N→` we have in the first summand of~17! a
bounded functionr multiplied by an infinite product of
terms smaller than one; this term obviously vanishes in
limit that we are considering, so that we may write

r~kx ,ky ,u!5C~u! (
n50

`

)
m50

n

c0~kx ,ky1mtavkx ,u!

1C~u!, ~18!

which now solves the problem for any possible CTRW in
simple shear flow. A first conclusion to be drawn is that
the y direction diffusion proceeds unaffected by the she
flow as becomes clear settingkx50 ~average over direction
x) in ~18! and performing the product and the sum indicat
to get

r~0,ky ,u!5
1

u

12w~u!

12c0~0,ky ,u!
,

which turns out to be identical to the solution of a CTRW
a resting fluid~1!. We therefore only expect novelties i
diffusion along thex axis. For Brownian diffusion with
c0(kx ,ky ,u)5w(u) exp (2s2kx

22s2ky
2), w(u)5

(11ut)21 and averaging over they direction (ky50), we
get

r~kx,0,u!5C~u! (
n50

`

„w~u!e2s2kx
2
…

n11

3exp S 2s2ta
2v2kx

2n~n11!~2n11!

6 D
1C~u!.

We are now interested in the moments of this distribution
is easy to see that̂x&50 so the dispersion̂dx2& will di-
rectly be given by^x2& and is easily computed from th
Fourier transform ofr as

^x2&52
]2r~kx,0,u!

]kx
2 U

kx50

.

We therefore have

^dx2&52C~u!s2(
n50

`

w~u!n11Fn111ta
2v2

3
n~n11!~2n11!

6 G1C~u!. ~19!

The sums in~19! can be performed explicitly and we obta
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^dx2&52s2F1u w~u!

12w~u!
1

ta
2v2

u S w~u!

12w~u! D
2

1
2ta

2v2

u S w~u!

12w~u! D
3G1

12w~u!

u
~20!

and introducingw(u)5 (11ut)21 the dispersion turns ou
to be, after inverting the Laplace transform,

^dx2&52
s2

t S t1 v2ta
2

2t
t21

v2ta
2

3t2
t3D 1e2t/t.

We now take the limit t→0, ta→0, s→0 keeping
D5s2/t andA5ta /t51 constants, which we hencefort
call the macroscopic limit, to get

^Dx2&[ lim
t,ta ,s→0

^dx2&52DS t1 1

3
v2t3D , ~21!

which is precisely the result obtained by solving t
diffusion-advection equation@1#.

2. Pure rotation
For this flow we have

V5S 0 2v

v 0 D ,
whence the equation for the random walker will be~14! with
Vk5(2tavky ,tavkx). Again we iterate this equationN
times and get

r~kx ,ky ,u!5r~aNkx2bNky ,aNky1bNkx ,u!

3 )
n50

N21

c0~ankx2bnky ,anky1bnkx ,u!

1C~u! (
n50

N22

)
m50

n

c0~amkx2bmky ,amky

1bmkx ,u! 1C~u!, ~22!

where we have defined the following real coefficients:

an5
1

2
@~11 ivta!

n1~12 ivta!
n#,

bn5
1

2i
@~11 ivta!

n2~12 ivta!
n#.

Again when we repeat the iteration indefinitely the first su
mand in ~22! vanishes sincer is a bounded function and
c0 is everywhere smaller than 1. Now we only focus on t
x direction since the problem is isotropic. We therefore a
erage along they direction by settingky50

r~kx,0,u!5C~u! (
n50

`

)
m50

n

c0~amkx ,bmkx ,u! 1C~u!.

~23!
-

e
-

We now try with the Gaussian diffusion
c0(kx ,ky ,u)5w(u) exp (2s2kx

22s2ky
2) and, observing

thatan
21bn

25(11v2ta
2)n, it is straightforward to obtain

r~kx,0,u!5C~u!F11 (
n51

`

w~u!n

3expS 2s2kx
2
~11v2ta

2!n21

v2ta
2 D G .

The first moment̂ x& vanishes and the dispersion^dx2& is
again determined bŷx2& which is easily computed and
gives

^dx2&52s2
1

u

w~u!

12~11v2ta
2!w~u!

. ~24!

We can now substitute the waiting time distributio
w(u)5 (11ut)21 to obtain the mean square displaceme
for Brownian diffusion in a circular flow~we useD5s2/t
andA5ta /t)

^dx2&5
2D

Av2ta
~eAv2tat21!.

In the macroscopic limitta→0 we finally obtain the stan-
dard result@1#

^Dx2&52Dt ~25!

so that diffusion remains unaffected by the rotation of t
fluid.

3. Pure shear
In this kind of flow the fluid approaches the origin alon

one direction and separates along the perpendicular d
tion, if we take these two directions to bex5y and
x52y, the flow corresponds to

V5S 0 v

v 0 D
and we will have to work with Eq. ~14! with
Vk5(tavky ,tavkx). We proceed as before iterating th
equationN times and get

r~kx ,ky ,u!5r~cNkx1dNky ,cNky1dNkx ,u!

3 )
n50

N21

c0~cnkx1dnky ,cnky1dnkx ,u!

1C~u! (
n50

N22

)
m50

n

c0~cmkx1dmky ,cmky

1dmkx ,u! 1C~u!, ~26!

where now the coefficients are defined as follows:

cn5
1

2
@~11vta!

n1~12vta!
n#,
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dn5
1

2
@~11vta!

n2~12vta!
n#.

We just consider thex direction since the symmetry assur
that the behavior alongy is exactly the same, so we avera
along they direction by settingky50. When we repeat the
iteration indefinitely the first summand in~26! vanishes for
the same reason as in the two previous cases to yield

r~kx,0,u!5C~u! (
n50

`

)
m50

n

c0~cmkx ,dmkx ,u! 1C~u!.

~27!

We now introduce our particular model distributio
c0(k,u)5w(u) exp (2s2k2) and usecn

21dn
25c2n to write

it as

r~kx,0,u!5C~u!H 11 (
n51

`

w~u!n

3exp F2
s2kx

2

2 S 12~11vta!
2n

12~11vta!
2

1
12~12vta!

2n

12~12vta!
2 D G J .

The first moment̂ x& vanishes and the dispersion^dx2& is
again determined bŷx2& which is easily computed an
gives

^dx2&5s2C~u! (
n51

`

w~u!nF12~11vta!
2n

12~11vta!
2

1
12~12vta!

2n

12~12vta!
2 G . ~28!

The summations are not difficult to carry out; we then su
stitute the waiting time distributionw(u)5 (11ut)21 and
with only some easy but tedious algebra we get a reason
expression and perform its Laplace inversion to obtain
mean square displacement for Brownian diffusion in a pur
sheared flow

^dx2&~ t !5
s2

t F 2t

42v2ta
2 2

t2e~22vta1v2ta
2
!t/t

2vtat2v2ta
2t

1
t2e~2vta1v2ta

2
!t/t

2vtat1v2ta
2t

G .
We now take the macroscopic limit withD5s2/t and
A5ta /t constants andta→0 and setA51 so that we fi-
nally obtain the standard result@1#

^Dx2&5
D

v
sinh ~2vt !. ~29!

We have therefore seen that the scheme is absolutely
sistent with the standard results of diffusion theory. The n
elty here is that we obtain the macroscopic mean square
placement directly from the distribution of step lengths a
-

le
e
y

n-
-
is-
d

waiting times and we need neither the diffusion-advect
equation nor the Langevin equation. This fact enables
now to attack the problem of Le´vy flights of two different
kinds ~infinite mean square step length and infinite me
waiting time! in a sheared medium. This problem had a
ready been addressed by starting from a postulated gen
ized diffusion-advection equation@15# for the case of infinite
mean square step length, but the other case remained ob
because too many problems arose from the analytic man
lation of a similarad hocgeneralization of the macroscop
equation for that case. In contrast, the derivation along
method that we propose here is elegant and easy and
substantiates the macroscopic diffusion-advection equa
which is to be applied to each case.

III. LE´ VY FLIGHTS IN SHEARED MEDIUMS

We will here apply the scheme presented in the previ
section to two CTRW models which in resting fluids lead
anomalous diffusion: we first present the results for
CTRW with infinite mean waiting time and we then turn
the CTRW with infinite mean square step length.

A. Infinite mean waiting time

To produce a CTRW which corresponds to a Le´vy flight
with an infinite mean waiting time we might choose, f
instance, a probability distribution such as@21#

c0~k,u!5
1

11~ut!gexp ~2s2k2! with 0,g,1.

~30!

We will first try to see what the convenient generalization
the diffusion-advection equation is. To do this we recall t
result ~15! with Vk5taV

T
•k , we introduce the distribution

that we now propose, we invert the Fourier-Laplace tra
form and we take the macroscopic limit, now keepi
A5ta /t

g and D5s2/tg constants ast→0, ta→0 and
s→0. This leads to the following diffusion-advection equ
tion ~we now have anA with dimensions of time to the
power 12g and, therefore, it cannot be given the value
nor be absorbed within a redefinition ofD and t, it must be
handled as a macroscopic parameter on an equal footing
D):

]gr~x,t !

]tg
1A¹•@v~x! r~x,t !#

5D¹2r~x,t !1
t2g

G~12g!
d~x!, ~31!

where we have made use of the Riemann-Liouville fractio
derivative@19# much in the same spirit as in@22#. The source
term appearing in Eq.~31! stems from the Laplace transform
of the Riemann-Liouville derivative and incorporates the i
tial conditions.

Equation~31! proposes an answer to the questions ari
in some works@15,17# as to what should be the convenie
generalization of the diffusion-advection equation for th
type of Lévy flights. In this scheme this question is answer
quite naturally and demands of the introduction of a n
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macroscopic parameterA which sets the right dimensions i
the advection term. The nature and interpretation of this n
parameter is still unclear and demands of some further in
tigations.

We now turn to the three types of linear shear flows, a
try to see what the mean square displacement of the CT
with long-tailed waiting time distribution is when the CTRW
evolves over a linearly sheared medium.

1. Simple shear
We must use the distribution~30! in the Eq. ~18! and

proceed along steps analogous to the ones for Brow
diffusion. Nevertheless, we observe that the spatial p
in ~30! is the same as in Brownian diffusion and we c
therefore borrow Eq.~20! and directly substitute ou
w(u)5@11(ut)g#21:

^dx2&52
s2

tg S u212g1
v2ta

2

tg u2122g12
v2ta

2

t2g u2123gD
1

tgu211g

11~ut!g .

Upon Laplace inversion and after the macroscopic limit w
D5s2/tg andA5ta /t

g constants, we end up with

^Dx2&52DF 1

G~11g!
tg1

2

G~113g!
v2A2t3gG ,

which coincides with~21! wheng51. This is therefore the
mean square displacement for this kind of Le´vy flight in a
simply sheared medium. This result is not easy to obt
from its associated diffusion-advection equation~31!, only
through this generalized CTRW scheme becomes the de
tion natural.

2. Pure rotation

Again we exploit the fact that the spatial term of~30! is
the same as in Brownian diffusion and just introdu
w(u)5 @11(ut)g#21 in Eq. ~24! obtaining ~remembering
that for this caseD5s2/tg andA5ta /t

g)

^dx2&52D
1

u~ug2Av2ta!
.

We take the limitta→0 and we invert the Laplace transfor
to obtain the result

^Dx2&5
2D

G~g11!
tg,

which is the standard diffusion regime in a resting mediu
so that for these Le´vy flights, as for Brownian diffusion, the
dispersion̂ dx2& remains unaffected by the rotating fluid.

3. Pure shear
As in the previous cases we take advantage of the ca

lations for Brownian diffusion in a pure shear and introdu
our distribution w(u)5 @11(ut)g#21 into Eq. ~28!. We
carry out the summations and we take the limit convenien
to obtain
w
s-

d
W

n
rt

in

a-

,

u-

y

^Dx2&52D
ug21

u2g24A2v2 ,

which cannot be analytically inverted but admits
asymptotic development for long times@as u2→(2Av)2/g

from the right# as

ug21

u2g24A2v2 5
~2Av!1/g21

24g F 24

u22~2Av!2/g

2
g221

~2Av!4/g
„u22~2Av!2/g…1••• G .

The Laplace inversion of the leading term in this expans
is now easily performed to obtain the asymptotic behavior
a Lévy flight with infinite mean waiting time in a purely
sheared medium

^Dx2&.
D

gAv
sinh@~2Av!1/gt#. ~32!

Comparing~32! with the mean square displacement for
Brownian walker in a purely sheared medium~29!, we see
that forg→1 both expressions coincide and for 0,g,1 the
long-time dispersion of the Le´vy flight grows significantly
faster for slightly sheared media@(2v)g21,A#. For a more
intense pure shear@(2v)g21.A#, though, it is the Brownian
random walker which advances more rapidly.

B. Infinite mean square step length

We now want to study CTRW’s with infinite mean squa
step length, that is, Le´vy flights of a different kind of the one
considered before where we take as a step length and wa
times distribution the following:

c0~k,u!5
1

11ut
exp @2s2b~kx

21ky
2!b# with 0,b,1.

~33!

As before we first look for the convenient generalization
the diffusion-advection equation by taking the formula~15!
with Vk5taV

T
•k and introducing ourc0(k,u). We then

invert the Fourier-Laplace transform and we take the mac
scopic limit, now keepingA5ta /t andD5s2b/t constants
as t→0, ta→0, and s→0. This leads to the following
diffusion-advection equation~asA now has no dimensions i
can be absorbed within a redefinition ofD and t or be set
equal to unity!:

]r~x,t !

]t
1¹•@v~x! r~x,t !#5D¹2br~x,t !. ~34!

This is the diffusion-advection equation for Le´vy flights with
an infinite mean square step length. It had previously b
conjectured@15,17# but this is its first analytic derivation.

We now study the typical displacement of the CTR
with long-tailed step length distribution in linearly shear
media. We consider the same three linear flows as before
we encounter now a new difficulty: the quantity that chara
terizes the relative diffusion of the trajectory cloud, traditio
ally the mean square displacement^dx2&, is now not well
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defined since the second moment of the density of parti
diverges. This fact has led some researchers to discard t
Lévy flights and to introduce instead the Le´vy walks, where
a coupling between waiting times and step lengths of
walker solves the problem~see@24# and references therein!.
We shall not follow this approach here. Instead, we resor
a theoretical frame which can provide us with a finite de
nition of the dispersion: the theory of ordered spans@18#.
Following this theory, if we have a symmetric step leng
distribution in one dimension, the probability of having th
walker within a centered interval of lengthm at time t, for
sufficiently highm and t, is

p~m,t !.
8

~m11!3(l50

`
d2

dk2
r~k,t !U

k52p~ l11/2!/~m11!

.

Furthermore, this theory also assures that for symme
movements all moments ofp(m,t) have the same statistica
properties, that is to say, all (^mm&)1/m have the same tem
poral dependence irrespective of the value ofm even though
numerically they might be different. We will later explo
this fact by choosing convenientlym to simplify our calcu-
lations and by defining a dispersionDx2 independent ofm.
In the meantime we shall work with an arbitrarym

^mm&~ t !5E
0

`

mm p~m,t ! dm.28~12m!~2p!m22

3(
l50

` S l1 1

2D
m22E

0

`

k2m
dr~k,t !

dk
dk, ~35!

where in the last equality we have approximatedm11.m,
we have changed variablesm52p( l11/2)/k as is custom-
ary in the theory of ordered spans@18#, and have integrated
once by parts supposing 0,m,1 to keep everything finite
We will now apply this theory to each of the linear she
flows which we studied for the other cases.

1. Simple shear
We take from~18! our probability densityr(k,u) with the

choice for our particular CTRW~33!. This gives the prob-
ability density averaged along they direction for this case

r~kx,0,u!5C~u!H 11 (
n50

`

w~u!n11

3expF2s2bkx
2b (

m50

n

~11m2v2ta
2!bG J

and we introduce it in ~35! to get, after taking the
derivative and performing the variable chan
j5sk@(m50

n (11m2ta
2v2)b#1/2b,

^mm&~u!5Cm,bsm C~u! (
n50

`

w~u!n11

3F (
m50

n

~11m2ta
2v2!bGm/2b

, ~36!

whereCm,b contains all the constants
s
ese

e

to
-

ic

r

Cm,b516b~12m!~2p!m22

3(
l50

` S l1 1

2D
m22E

0

`

j2b2m21e2j2b
dj.

Cm,b is finite as long asm,2b andm<1 and is expressible
in terms of the zeta numbersz(y) and the gamma function a

Cm,b58~12m!~2p!m22~222m21!z~22m!GS 2b2m

2b D .
~37!

These constants arem dependent so we will suppress the
from our definition ofDx2 since we are looking for a quan
tity which retains the main features common to all^mm&1/m

but is independent ofm. We make the following definition:

Dx2~ t ![2S ^Mm&~ t !
Cm,b

D 2/m, ~38!

where^Mm& stands for the macroscopic limit of^mm&. We
will show in our examples that this definition proves to
independent ofm and coherent with the mean square d
placement̂ Dx2& of Brownian diffusion asb→1. Further-
more, from~36! it seems that the divergences which appe
in Cm,b and in ^mm& whenm52b cancel out in definition
~38! as we show in the next example, so thatm52b is as
good as any other value in order to computeDx2.

If the fluid is at rest,v50, Eq. ~36! simplifies to

^mm&~u!5Cm,bsm C~u! (
n51

`

w~u!nnm/2b. ~39!

Now, the choice form which would simplify most this cal-
culation would bem52b but this value form would make
the constantCm,b ~37! diverge and therefore it does not see
to be appropriate in this case. Nevertheless, since what w
really seek to compute isDx2, if the divergences in~38!
cancel out form52b we conjecture that theDx2 thus com-
puted coincides with whateverDx2 computed with any other
m. We corroborate this conjecture for this particular case~no
shear,v50) and then we apply it in our further develop
ments to simplify our calculations. We take an arbitrarym
satisfyingm,2b andm,1 so thatCm,b is finite. We can
then write~39! as

^mm&~u!5Cm,bsm C~u!w~u! FS w~u!,2
m

2b
,1D ~40!

in terms of the special functionF(z,s,v) ~for the definition
and a list of properties see, for instance,@25#!. In fact, we are
interested in the behavior of^mm& in the macroscopic limit,
whenw(u)5(11ut)21→1. We therefore make use of th
following asymptotics forF:

F~x,n,s!.
G~12n!

~12x!12n as x→1. ~41!

So that~40! is approximated in the macroscopic limit by
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^mm&~u!5Cm,bsm GS 11
m

2b D w~u!

u„12w~u!…m/2b ,

which upon substitution of the standard waiting time dis
bution w(u)5 (11ut)21.12ut, application of the mac-
roscopic limit withD5s2b/t constant and Laplace inver
sion yields^Mm&(t) and then substitution in~38! gives the
usual scaling behavior for these Le´vy flights in resting fluids
~note that it is independent ofm)

Dx252~Dt !1/b. ~42!

We now show thatm52b yields the same result in a muc
simpler way. Settingm52b in ~39! transforms the previ-
ously complicated power series in a geometrical series wh
is straightforwardly computed and yields~formally, since
C2b,b is known to diverge!

^m2b&~u!5C2b,bs2b C~u!
w~u!

„12w~u!…2
.

Introducing noww(u)5 (11ut)21, taking the macroscopic
limit with D5s2b/t and inverting the Laplace transform
gives^M2b&(t) and substitution in our definition for the dis
persionDx2 cancels out the divergencies and leads us
exactly the same temporal dependence as we got for the
m5b with finite constantCm,b ~42!

Dx252~Dt !1/b. ~43!

The correspondence between~42! and~43! supports our con-
jecture thatm52b is as good as any otherm moment to
computeDx2 and that definition~38! is independent ofm.

We now study a general simple shear flow withvÞ0: we
setm52b in ~36! and invert the order of the summations
get

^m2b&~u!5C2b,bs2b ta
2bv2b

w~u!

u

3 (
m50

`

w~u!mS 1

ta
2v2 1m2D b

.

We will see now that, in the macroscopic limit, this summ
tion can be calculated. First we note that the following
equalities are true:

w

u (
m50

`

m2bwm,
w

u (
m50

`

wmS 1

ta
2v2 1m2D b

,
w

u (
m50

`

wmS 1

tav
1mD 2b

.

From where, using the definition forF(z,s,v) @25# , we can
write

w2

u
F~w,22b,1!,

w

u (
m50

`

wmS 1

ta
2v2 1m2D b

,
w

u
FS w,22b,

1

tav
D .
-

h

o
ase

-
-

It is now easy to see that settingw5(11ut)21 and taking
the macroscopic limit@t→0 with A5ta /t andD5s2b/t
constants and using the asymptotics~41!# both sides of the
inequality yield the same expression, so that we can c
clude

^M2b&~u!5C2b,bDA
2bv2bG~112b!u2222b

and we now perform its inverse Laplace transform to
^M2b&(t). The typical scaling behavior of a Le´vy flight de-
fined by a long-tailed step length distribution in a fluid su
ject to simple shear flow is then obtained by applying de
nition ~38!

Dx25
2

~2b11!1/b
v2D1/bt211/b, ~44!

which has exactly the same temporal dependence which
found in @15# in a heuristic manner starting from th
diffusion-advection equation~34!. The result~44! converges
exactly to the Brownian diffusion result~21! for b→1 at
sufficiently long times~when the formulas of the theory o
ordered spans apply!. It is interesting to note from~44! that
Lévy flights with infinite mean square step length enhan
also diffusion in a simply sheared flow with respect to t
usual scaling for Brownian motionDx2;t3 ~21!.

2. Pure rotation

For this other linear shear flow we proceed in a simi
manner by using~23! in ~35!. Equation~23! yields, upon
introduction of ourc0 ~33!

r~kx,0,u!5C~u!F11 (
n51

`

w~u!n

3expS 2s2bkx
2b
12~11v2ta

2!nb

12~11v2ta
2!b D G .

We derive it with respect tokx and introduce this result into
formula ~35!. Changing variables conveniently~see the pre-
vious case! the resulting equation turns into

^mm&~u!5Cm,bsm C~u! (
n51

`

w~u!nF12~11v2ta
2!nb

12~11v2ta
2!b Gm/2b

,

~45!

whereCm,b contains all the constants again and reads a
~37!. We now choosem52b for the computation of~45!
since we know that the divergences cancel out when we
definition ~38! for Dx2. With this choice, Eq.~45! simplifies
enough in order to carry out the summation explicitly so th
we get

^m2b&~u!5C2b,bs2bC~u!

3
w~u!

@12w~u!#@12w~u!~11v2ta
2!b#

.

We now introduce the waiting time distributionw(u)5
(11ut)21 and take its inverse Laplace transform. We o
tain, formally,
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^m2b&~ t !5C2b,b

s2b

t

expF ~11v2ta
2!b21

t
tG21

~11v2ta
2!b21

t

.

We now setD5s2b/t andA5ta /t constants and take th
macroscopic limit in order to obtain the macroscop
^M2b&(t). Subsequent substitution in definition~38! for
Dx2 then yields the macroscopic typical scaling of such
diffusive motion in a purely rotational flow

Dx252~Dt !1/b,
ge
nd
th
-

-

e

a

which, for this CTRW as for Brownian diffusion, is invarian
with respect to the characteristic behavior in a fluid at r
~43!. Again for this case our definition for the dispersio
Dx2 converges exactly to the mean square displacemen
Brownian diffusion^Dx2& in a rotating flow~25! asb→1.

3. Pure shear

We follow analogous steps as in the previous two ca
and introduce our distribution~33! into the formula for the
probability densityr in this kind of flow ~27! to get
t the
r~kx,0,u!5C~u!H 11 (
n50

`

w~u!n11expF2s2bkx
2b (

m50

n S ~11vta!
2m1~12vta!

2m

2 D bG J .
Putting it into Eq.~35! and performing the variable change much in the same spirit as for~36! we end up with

^mm&~u!5Cm,bsm C~u! (
n50

`

w~u!n11F (
m50

n S ~11vta!
2m1~12vta!

2m

2 D bGm/2b

. ~46!

Again we usem52b in ~46! to simplify the summations. We can then invert the order of the summations, carry ou
innermost one and get

^m2b&~u!5C2b,bs2b
C~u!

12w~u! (m50

`

w~u!m11S ~11vta!
2m1~12vta!

2m

2 D b

. ~47!
-

ed
ts

ut
To compute the last summation we will perform some al
braic manipulations: we first take the summa
(11vta)

2m out of the parentheses and then we express
resulting parentheses to the powerb as a series; the summa
tion overm is then readily carried out and we obtain

^m2b&~u!5C2b,bs2b
1

2b (
n50

` S b
n D

3
C~u!

12w

1

12w~11vta!
2bS 12vta

11vta
D 2n .

We now introducew(u)5(11ut)21 and apply the macro
scopic limit term by term keepingD5s2b/t and
A5ta /t51 constants in our infinite sum. We invert now th
Laplace transform on the resulting series to get

^M2b&~ t !5C2b,b

D

2b (
n50

` S b
n D 12e2v~b22n!t

2v~2n2b!
,

which is easily seen to correspond to

^M2b&~ t !5
C2b,b

2b DE
0

t

dt (
n50

` S b
n Dexp@2v~b22n!t#

or, performing the summation explicitly,
-

e
^M2b&~ t !5C2b,bDE

0

t

dtcoshb~2vt!.

This integral can be approximated since 0,b,1, for large
enought, as

^M2b&~ t !.C2b,b

D

2bv
coshb21~2vt !sinh~2vt !

and the dispersion is, therefore, according to definition~38!

Dx252F D

2bv
coshb21~2vt !sinh~2vt !G1/b,

which coincides settingb51 with the mean square displace
ment of Brownian diffusion in a pure shear flow~29!. As-
ymptotically for t→` we then have

Dx2.S D

2bv D 1/be2vt,

which are the same asymptotics as~29! from where we con-
clude that, for sufficiently long times a Le´vy flight with in-
finite mean square step length~which traditionally leads to
enhanced diffusion! does not enhance in a purely shear
flow the performance of Brownian motion. This contras
with the previous result for Le´vy flights with infinite mean
waiting time which in resting fluids lead to subdiffusion b
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TABLE I. Summary of the macroscopic dispersions obtained for the three kinds of flows studied~simple
shear, pure rotation, and pure shear! in the three cases considered: Brownian-like diffusion, Le´vy flights with
infinite mean waiting time, and Le´vy flights with infinite mean square step length. The symbol; indicates
that the result shown is a long time behavior.

(Dx2) Brownian Lévy, ^t&5` Lévy, ^ l 2&5`

Simple shear 2D(t1 1
3v

2t3)
2DF 1

G~11g!
tg1

2v2A2

G~113g!
t3gG ;

2
(2b11)1/b

v2D1/bt211/b

Pure rotation 2Dt 2D
G(11g)

tg
;2(Dt)1/b

Pure shear D

v
sinh (2vt) ;

D

gAv
sinh@(2Av)1/gt# ;2F D

2bv
coshb21~2vt!sinh~2vt!G1/b
-
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in purely sheared flows, if (2v)g21,A, enhance the super
diffusion of standard diffusive movements~32!.

IV. CONCLUSIONS

The main contribution of this paper is the formulation o
generalization of CTRW’s to account for diffusion in mo
ing fluids. This formulation permits to study the behavior
Lévy flights in these media in a much more rigorous w
than through anad hoc generalization of the diffusion
advection equation as was up to now customary. From
scheme which we put forward here the existence of a n
macroscopic parameterA associated to the onset of adve
tion appears as necessary for Le´vy flights with infinite mean
waiting time in order to have a well defined macrosco
limit. The nature of this parameter remains obscure but
necessity for the coherence of the scheme is strong enou
admit it before further investigations are carried out.

We have here applied this scheme to three types of t
dimensional shear flows and we have got the asymptotics
the typical rate of diffusion for Brownian walks, Le´vy flights
with infinite mean waiting time and Le´vy flight with infinite
mean square step length, respectively, which we show
Table I where with; we indicate that the result is onl
asymptotically valid for large values oft and (Dx2) means
that in the first two columns the mean square displacem
^Dx2& is presented and in the last column the expressi
correspond to our definition of the dispersionDx2 for Lévy
flights with infinite mean square step lengths. We are the
fore comparing different quantities but we claim that th
approximately describe the same property for each diffus
mechanism. This is supported by the correspondence
tween the results in each row, which is satisfied at least
ymptotically both forg→1 and forb→1. It is also remark-
f

e
w

ts
to

o-
or

in

nt
s

e-

n
e-
s-

able that in the pure rotation case the three cases coin
with the corresponding results for a resting fluid: Browni
diffusion, subdiffusion, and superdiffusion, respectively.
the simple shear case we also see that the dispersion
Brownian diffusion^Dx2&;t3 expands faster than that fo
Lévy flights with infinite^t& and slower than the correspond
ing Dx2 for Lévy flights with infinite ^ l 2&. The astonishing
result is that this trend is no longer followed in the pure sh
case, where Le´vy flights with infinite mean waiting time
might even lead to the enhancement of the Brownian su
diffusion for sufficiently weak shearsA.(2v)g21. For
strong enough shears, though, diffusion is again slower t
in the Brownian case whereas Le´vy flights with infinite mean
square step length always show the same asymptotic su
diffusion as Brownian motion irrespective of the value whi
takeb or v.
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